

This doc: https://bit.ly/ppred-doc; see also https://bit.ly/3SlsB1P

Privacy-Preserving Discovery (PPreD)
Daniel Hardman, first described in early 2017, updated March 2020

Background
The decentralized identity systems we want to build need privacy, but they also need
discoverability. These two goals are sometimes in conflict. If we record everybody’s PII in a
giant registry in the sky, it’s easy to find, but not very private. If we operate in stealth mode,
nobody can find us.

This paper is about a possible, partial resolution of that tension. It is based on the insight
that normal discovery is passive (you get discovered without any effort on your part) — but
that it could be built to require your active participation instead.

We’ll first explore the discovery problem from the perspective of endpoint discovery —
finding a way to talk to someone without knowing the full route that gets to them. Later,
we’ll explore how to apply the technique to other discovery problems, and look at the
consequences for regulations like GDPR.

Discovering a route
A simple way to talk to participants in a decentralized identity ecosystem would be to
access them at a well known URI:
https://identityhosting.infrastructureprovider.com/identity123. This is the purpose of
endpoints in DID docs. It works well when the privacy of the owner behind a host is not
vital (e.g., for a public institution). However, it presents a serious problem in some cases.
Imagine what would happen if a pseudonymous political dissident’s endpoint could be
traced back to the infrastructure that hosted it, and if the infrastructure’s billing records
could then be hacked to determine the billing address of the person who uses it.

What we would like is a protocol that is similar to onion routing, that allows an arbitrary
party to initiate a conversation with another arbitrary party such that:

●​ Each party knows the other’s identifier, but nothing else. Specifically, neither party
knows the route or endpoint for the other.

●​ No other parties along the route between the two endpoints know the full route,
either.

Onion routing in mix networks doesn’t do this, because it assumes a publicly routable
target as input. It then interposes indirection to anonymize only the sender.

https://bit.ly/ppred-doc
https://bit.ly/3SlsB1P

This doc: https://bit.ly/ppred-doc; see also https://bit.ly/3SlsB1P

Privacy-Preserving Discovery (PPreD, pronounced /PEE pred/ to rhyme with “seabed”) is a
solution to this problem. With PPreD, it is possible to use a URI like ppred://identity123 to
talk to an identity owner in a way that preserves both sides’ privacy from each other and
from all observers. This mechanism is somewhat expensive to use, relative to the cost of
communicating with a known party over a stable onion route--but it is scalable and
relatively practical to implement.

PPreD Address Space

The type of identifier that PPreD can use to derive a private route is called a decentralized
identifier (DID). In this discussion, I’ll assume that DIDs are 16-byte, world-unique values
with the same size and entropy as randomly generated UUIDs. Other sizes of DIDs could
use this same mechanism; I’ll leave adaptation of the mechanism to those sizes as an
exercise for the reader.

Given a DID size of 16 bytes, the DIDs can be represented in 32 hex digits, or 8 hex digit
quads:

3293 31d1 7d2d 4dd1 9427 eb3f aac9 3769

Each quad in a DID can have 2^16 or 65536 possible values. The set of all possible values
0000 through FFFF is called the quad address space.

PPreD Rendezvous Nodes

Posit a large network (thousands) of nodes that facilitate PPreD. These could be nodes that
participate in a blockchain, since decentralized identity talks about blockchain a lot--but
there’s no particular relationship to a blockchain. These “rendezvous” nodes are not
considered especially trustworthy and are not entrusted with secrets, but they do donate
their services to the larger community. Their function is analogous to a neutral meeting
place that human messengers might use as a rendezvous point in the physical world.

When a rendezvous node initializes, it claims at random a range from the quad address
space that begins with any number between 0 and 65535, and that represents 1/64th of
the quad address space--for example, 18BF through 1CBE, inclusive. It then registers its
availability and its range so it can be used by the community. 1

1 The PPreD service node registry could be hierarchical, like DNS, but it would have to be dynamic as
well. Machines that participate in the registry are assumed to be relatively long-lived--but the
registry needs to support some amount of turnover. The details of this registry are not discussed
here.

https://bit.ly/ppred-doc
https://bit.ly/3SlsB1P

This doc: https://bit.ly/ppred-doc; see also https://bit.ly/3SlsB1P

Advertising

When Alice wants to communicate with Bob, she starts with Bob’s PPreD URI (his DID with a
little decoration). Suppose it is ppred://329331d17d2d4dd19427eb3faac93769. She
breaks this URI into 8 quads. She then looks up rendezvous nodes in the rendezvous 2

registry that have claimed ranges of the address space that includes each quad. For
example, she would need to find a node that services the quad 3293, and another node
that services the quad 31d1, and so forth. Lookup might return multiple nodes that service
the range, in which case Alice can select one at random. At the end of this lookup process,
Alice has chosen 8 rendezvous nodes that she wants to use.

Alice then contacts each of these 8 rendezvous nodes with a message that has a formal
structure that we’ll ignore for the moment. The message essentially says: “I am interested
in talking to an ID with 3293 as one of its quads. Here is an encrypted version of my ID,
unlockable by the correct recipient, and here are several pre-computed onion routes that
get from you (this rendezvous node) back to me [where the routes are encrypted by the
target ID’s public key so they are opaque to the rendezvous node]. Here is an encrypted
nonce X' that, when decrypted by the proper recipient, will produce the value X. The TTL for
my request is Y.” The nonce in this message is encrypted using the public key for the target 3

DID, as declared in a DID doc. The overall message is encrypted using the public key of the
rendezvous node, so that only the rendezvous node can read it.

The rendezvous server records this connection request and keeps track of it until it expires.

Each rendezvous node is running a gossip protocol that shares this request with other
rendezvous nodes having a compatible range, re-encrypting the message using each peer
node’s public key as appropriate. This makes knowledge of the request propagate, and it
makes the final location of a successful rendezvous unpredictable. The amount of gossip
needs to be tuned.

Polling

Meanwhile, Bob is polling some randomly selected rendezvous servers that match certain
quads in his identifier. He may poll at whatever interval he chooses. For example, he may
poll once per minute, or he may set rules about polling for himself such as “I only check for
new contacts on Thursdays between noon and 1 pm.” He doesn’t need to tell anybody his
schedule.

3 Perhaps the message may contain other constraints on the communication request, such as a start
time (“I don’t want to talk until date X”), a proposed topic for the conversation, etc? Does this
introduce security risk?

2 Lookup needs to include a proof-of-patience task or similar, so it can’t be DDoS’ed. And so do other
parts of the algorithm.

https://bit.ly/ppred-doc
https://bit.ly/3SlsB1P

This doc: https://bit.ly/ppred-doc; see also https://bit.ly/3SlsB1P

Bob’s polling operation essentially asks each rendezvous server that interests him, “Is there
anybody trying to talk to quad X?” (where X is whatever quad is compatible with the server
he’s asking, e.g., 3293). If a rendezvous server knows about a pending request that
matches, it asks Bob to prove that the message is meant for him. It might not be; lots of
people might have registered for this quad because it was part of their legitimate DID. Bob
doesn’t have to respond to this proof request. Before he does, he might want to poll some
other servers that are monitoring other quads relevant to his DID. Only if he sees that
there’s a pending request for all of his quads is it worth his time to engage further. (Even
then, it might not be worth his time, because Alice might be trying to reach a DID that uses
his quads in a different order…)

Assuming Bob detects a match for his DID, he distinguishes himself from malicious
listeners or from innocent listeners that weren’t Alice’s real target by presenting a proof
that he can decrypt the nonce X' and produce X. Only the possessor of Alice’s target DID
can do that. If Bob is successful, the rendezvous server asks Bob for one or more onion
routes that get from it to Bob, where the routes should be communicated in a blob
encrypted by Alice’s public key. At this point the rendezvous server knows that two parties
should connect, and it holds at least one halfway route between it and each party, but it
does not know either party’s identity, and the routes it is holding are opaque to the
rendezvous server (since the were encrypted by Bob for Alice, and by Alice for Bob).

Connecting

The rendezvous server now builds payloads announcing the connection to both parties.
Bob receives a message announcing that Alice wants to connect, with an onion route that
gets from Bob to Alice (combining info provided by both parties); Alice gets the opposite.
This message is sent along all the routes that either party provides, to account for the
possibility that some of the routes have been invalidated in the meantime. (Or, each route
is tested by the rendezvous server until one works, and then that route is the one that it
selects?)

Once Alice and Bob connect, they can negotiate a persistent rendezvous point (which might
be hosted on a rendezvous server), or they can maintain a session as long as they want,
then tear it down and build a new one next time they wish to speak. At some point, if Bob
and Alice trust one another, they can use a non-ephemeral endpoint for communication.
Such endpoints can be rotated using a scheme that Bob and Alice agree upon during their
first secure and private session, allowing efficiency without the overhead of repeated
discovery.

A malicious rendezvous server cannot substitute routes, because the communication
between Alice and Bob is signed by public keys that are known to belong to the identities in
question. It never knows the identity of either party, or the full route to either party.

https://bit.ly/ppred-doc
https://bit.ly/3SlsB1P

This doc: https://bit.ly/ppred-doc; see also https://bit.ly/3SlsB1P

Likewise, malicious parties cannot spy on a rendezvous server and learn anything
particularly useful.

Net effect

The overall consequence of this protocol is that a party can be contacted at a public
identifier without anybody in the world knowing how to route to the party directly. PPreD is
like an anonymous rendezvous in a public place, where both parties guarantee that they
are not followed by a tail on the way there or on the way back. And it goes one step further,
because any interested party can show up at the rendezvous site unilaterally, not
pre-announced--and if the other party is open to being contacted, communication can be
bootstrapped.

PPreD is a relatively expensive protocol, too inefficient for routine use. However, there are
cases where privacy is crucial, and it is worth the overhead of this protocol to make strong
guarantees.

Beyond Endpoints
This same principle — requiring the active participation of a data holder to complete
discovery — can be used to facilitate discovery of other things besides Bob’s endpoint. One
particularly interesting example is that it could be used to discover the registration of DID
values themselves.

Before describing how this would work, let me comment about how this differs from the
sort of passive enumeration that could be done against a phone book or traditional
directory. If DIDs are publicly registered on a blockchain, then the blockchain probably
offers some sort of transaction enumeration that makes discovery easy. That’s passive
discovery, and in immutable blockchains it has the GDPR problem that
right-to-be-forgotten is really hard to support.

But if the DIDs are off-chain, or if their method doesn’t allow querying for arbitrary values,
then what’s described here could be useful — and a value-add over and above what would
be possible with the simple endpoint discovery that we first described. Given thousands of
rendezvous nodes and millions of registered DIDs, it’s likely impractical for Alice to
enumerate all registered DIDs by querying rendezvous nodes for all their registered quads.
Even if she could do that, the results wouldn’t give her a definitive set of DIDs, since
registration doesn’t include information about quad ordering, and nothing stops people
from doing spurious registrations to introduce noise. So the form of discovery we’d do is
discovery of the answer to a very narrow question: Does the owner of DID value X want to be
discovered? It’s not discovery of whether the DID exists.

https://bit.ly/ppred-doc
https://bit.ly/3SlsB1P

This doc: https://bit.ly/ppred-doc; see also https://bit.ly/3SlsB1P

So here’s how discovery of a single registered DID value would work. We posit registration
of millions of Bobs as described earlier. However, we imagine that Alice starts with different
information. Instead of beginning with a DID that she resolved to get its public key, so she
could talk to it, we posit that Alice has a theory that DID value X might be registered. She
has no key material for it.

She now crafts a different message to the rendezvous nodes. Instead of, “I want to be
routed to X, and here’s an encrypted nonce that X must prove it can decrypt properly, and
here’s an encrypted route back to me”, Alice’s message says, “I want to know if X is
registered. Please have X contact me at DID Y, if the answer is yes.” Besides sending this
message, Alice may also register her DID Y with the rendezvous nodes, so she can be
contacted via rendezvous by Bob. Alternatively, Alice may make DID Y a traditionally,
publicly registered DID if she likes.

Information about this message now percolates through the system, and Bob learns about
Alice’s intentions. If he decides he wants Alice to know about his DID’s registration, he can
either turn around and run the endpoint discovery protocol on her DID (Y), or he can reach
out to her public endpoint. The latter would degrade his privacy; he could go through a mix
network if he liked. But either way, he has to share with Alice a proof that he controls the
DID in question. This means his DID, X, has to become resolvable to Alice, and he must sign
or encrypt his response to her using a key from DID X’s DID doc such that she becomes
confident she’s talking with X’s true controller.

Regulatory Compliance
What’s interesting about this mechanism from a regulatory compliance perspective is that
the registration is mutable. It doesn’t need blockchain features, and it doesn’t have to be
supported by trustworthy nodes. Nobody is ever registering their full DID anywhere; rather,
they are registering possibly true, possibly false interest in particular portions of a DID
which, taken in the aggregate, allow only the holder of the real DID to confirm its existence,
its routability, etc.

https://bit.ly/ppred-doc
https://bit.ly/3SlsB1P

	Privacy-Preserving Discovery (PPreD)
	Background
	Discovering a route
	PPreD Address Space
	PPreD Rendezvous Nodes
	Advertising
	Polling
	Connecting
	Net effect

	Beyond Endpoints
	Regulatory Compliance

